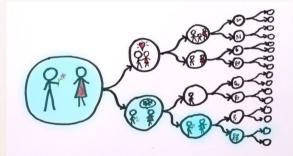
Panel: Humans vs. Things in the Metaverse Chair: Jamil Kawa, Synopsys

Panelists: David Atienza, EPFL Tajana Siminic, UCSD Joseph Friedman, UT Dallas Victor Grimblatt, Synopsys

Summary: The metaverse has dramatically evolved since the term was coined back in 1992 by Neal Stephenson in his science fiction novel "Snow Crash". It progressed from representing the Internet of Things to the Internet of Everything "IoE", to a virtual world that encompasses augmented reality (AR), virtual reality (VR), 3D holographic avatars, and is moving along to include "smart objects"! It is considered by some to be the nucleus to a parallel universe. In this panel we'll address the metaverse from an engineering and science perspective addressing issues related to the inclusion of actors beyond humans such as "smart objects", we'll address the potential of the metaverse to be an interconnected multiverse serving different applications, with different populations. We'll also lookat the possible evolution venues of the metaverse in the presence of AI and the security, safety and governance implications associated with that.

David Atienza

EPFL


Humans vs. Things in the Metaverse

Metaverse Concept... Just one Thing?

- Metaverse in all dimensions: "... massively scaled and interoperable network of real-time rendered 3D objects" (M. Ball – 2020, video gaming)
 - Persistent virtual world for humans and objects to interact and solve a problem together

- Long run: hard to create a "single" Metaverse/twin for all: one size does not fit all...
 - Multiverse: "confusing moral meaning of natural phenomena and not to other possible universes" (W. James – 1895, Philosophy)
 - Multiple applications, multiple tastes, etc. You can choose... but someone has to "regulate" it!

[Ack. Encyclopedia Britannica]

Metaverse and Privacy?

- Multiple modalities of edge AI devices to enable the metaverse: Next-gen IoT and Cloud interaction
 - Sustainable with current electronics and AI?
 Not really: "biodegradable" IoT, "zero-energy" AI, ...
 - Energy for it? Much worse than IoT: more objects, harder realtime interaction constraints: Multi-level/hierarchical concept
- Full knowledge of people's world/actions to create it
 - Impossible to preserve "privacy", rethink fundamentals?!
 - Ethical/Moral consequences: How do we get "universal rules" in the Metaverse... We do not even agree in our real world!

Evolution of wireless, bigdata, machine learning and deep learning

1G Voice only serve	ices 2G, 2.5G, 2.75G Voice, Data ad web mobile inte low speed streaming services a services		ons, fast web, aming 4G High speed, high qual multimaedia streamir		itions, IoT, nedia,
1950	1990	2005	2010	2020 and b	beyond
BigData proce	AS, data warehousing, online analytical assing, dashboards and scorecards, data ag and statistical analysis	Opinion mining, unstructure answering, web analytics ar intelligence, social media ar network analysis, special-te	nd web analys nalytics, social virtua	ion aware analysis, person-centralized sis, context-relevant analysis, mobile lization, human-computer-interactions, omus decisioning	K
AI & propagation layer deep n	iology neurons, perceptons, back model, multilayer neural networks, 8 network, RNN, ANN, back propagation stic requirements, CNN using back	Work from ML shifts from kn to data-driven approach, vais problem, LSTM, Deep belief r ImageNet	hing gradient Adversa	ng gradient, DeepLearning boom, Gene arial NN, AlphaGO beats human, Trio wi Deep Face	

ML and AI take separate paths

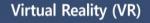
Metaverse Today

"Horizon Worlds" was quickly dismissed as a poor quality video game despite Zuckerberg's insistence that it was more.

> Mass Layoffs and Absentee Bosses Create a Morale Crisis at Meta

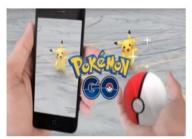
April 12, 2023

By <u>Sheera Frenkel</u> and <u>Mike Isaac</u> Reporting from San Francisco


Meta's "year of efficiency" means job cuts less metaverse, and more generative AI

Mark Zuckerberg is shifting the company's focus to language models for AI

Where digital meets physical with success



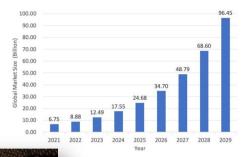
VR games

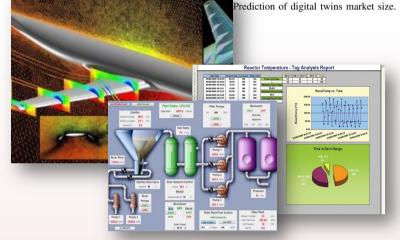
Virtual training on driving a excavator

Augmented Reality (AR)

Pokemon Go

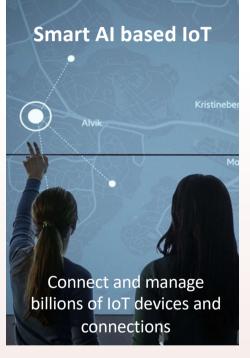
IKEA smartphone AR app


Mixed Reality (MR)

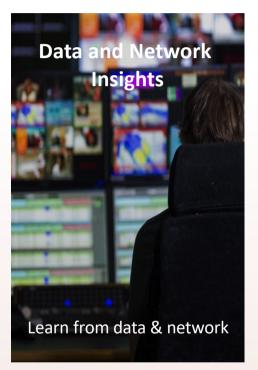


Airbus production line

Volvo Automotive




Digital twins


- show current and historical sensor status
- enable development of models to virtually test how something that might not exist will react in a specific environment
- merge data collected by <u>IoT</u> sensors with physics to optimize system design, predictive maintenance and asset management

IoT supercharged by 6G & AI \rightarrow Eart

We generate a photorealistic 3D digital twin of the entire planet.

Evolution of wireless, bigdata, machine learning and deep learning

1G Voice or	nly services 2G, 2.5G, 2.75G Voice, Data ad web mobile intern low speed streaming services an services		eb, 4G High speed, high qua multimaedia stream	Super fast mobile internet, low latency network for mission critical applications, IoT, security ad surveillance, HD multimedia, autonomous driving, shmart healthcare ality voice over IP, HD ing, 3D gamming, HD and worldwide roaming	66
1950	1990	2005	2010	2020 and beyond	d
BigData	RDBMS, data warehousing, online analytical processing, dashboards and scorecards, data mining and statistical analysis	Opinion mining, unstructured data, q answering, web analytics and web intelligence, social media analytics, so network analysis, special-temporal an	ocial virtu	ation aware analysis, person-centralized ysis, context-relevant analysis, mobile aalization, human-computer-interactions, onomus decisioning	
AI & prop Iayer ML CNN,	agation model, multilayer neural networks, 8 deep network, RNN, ANN, back propagation	Work from ML shifts from knowledge- to data-driven approach, vaishing grad problem, LSTM, Deep belief network, ImageNet	lient Advers	ning gradient, DeepLearning boom, Generative sarial NN, AlphaGO beats human, Trio wins Turing I, Deep Face	ChatGP

PT

ML and AI take separate paths

Joseph Friedman

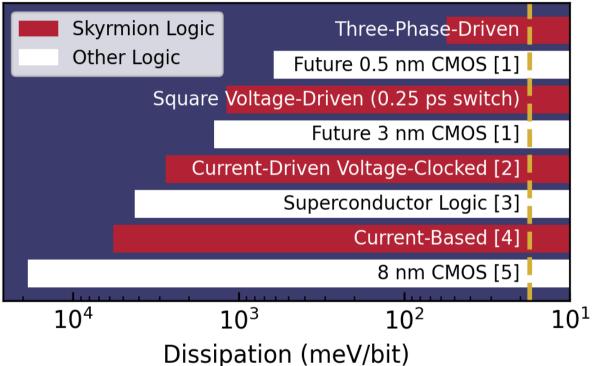
UT Dallas

Humans vs. Things in the Metaverse

Humans vs. Spintronics on the Metaverse

- Edge Computing
 - Extreme energy efficiency
 - Robustness to intermittent power cycling
- Inference with Pre-Trained Models
 - Extreme energy efficiency
 - Everything else can be sacrificed
- Online Learning & Inference
 - Backpropagation uses too much energy
 - Unlabeled data unavailable

Edge Computing: Reversible Computing with Magnetic Skyrmions


3-Phase Skyrmion AND/OR Gates

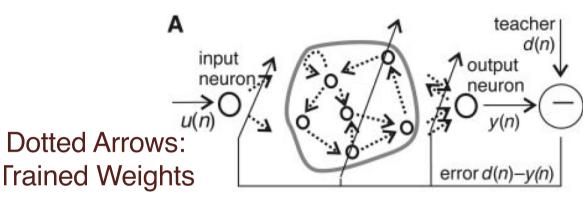
B. W. Walker, A. J. Edwards, X. Hu, M. P. Frank, F. Garcia-Sanchez, J. S. Friedman, arXiv, 2023

Joseph S. Friedman

Edge Computing: Reversible Computing with Magnetic Skyrmions

Landauer's Limit

B. W. Walker, A. J. Edwards, X. Hu, M. P. Frank, F. Garcia-Sanchez, J. S. Friedman, arXiv, 2023


UT DALLAS

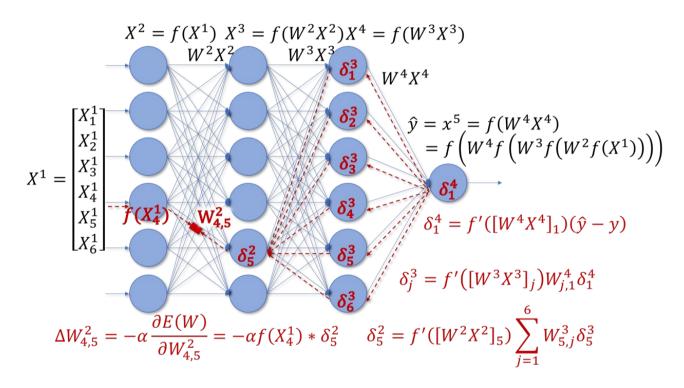
Joseph S. Friedman

14

Inference with Pre-Trained Models: Nanomagnet Reservoir Computing

Recurrent Neural Network

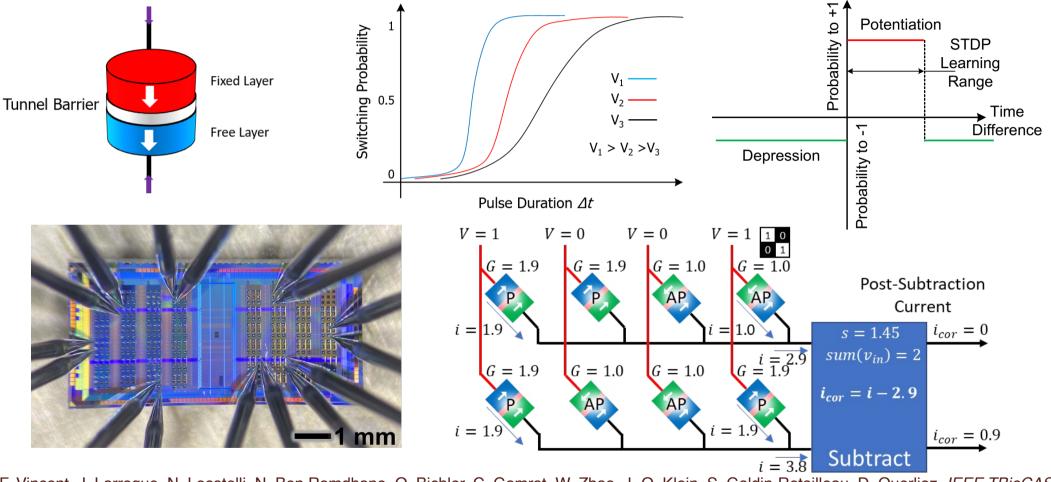
Reservoir Cc


Solid Arrows: Fixed Weights

T. Natschläger, W. Maass, H. Markram, TLELINATIK, 2002

A. J. Edwards, D. Bhattacharya, P. Zhou, N. RHMutaegrad, H. LHhas, B. inde, 2004, J. Atulasimha, J. S. Friedman, arXiv, 2022

Joseph S. Friedman


Online Learning & Inference: Unsupervised Stochastic STT-MRAM Switching

Backpropagation

Joseph S. Friedman

Online Learning & Inference: Unsupervised Stochastic STT-MRAM Switching

A. F. Vincent, J. Larroque, N. Locatelli, N. Ben Romdhane, O. Bichler, C. Gamrat, W. Zhao, J.-O. Klein, S. Galdin-Retailleau, D. Querlioz, IEEE TBioCAS,

Joseph S. Friedman

SYNOPSYS[®]

Metaverse and Agribusiness

Victor Grimblatt April 2023

Background

- Population is growing.
- Arable land is decreasing.
- Climate change is a major challenge for agriculture.
- One third of GHG emissions is caused by agriculture, forestry, and change of land use.
- For 2050 current agricultural production needs to be increased by 70%.
- 70% of "blue water" withdrawals from watercourses and ground water are destined to agricultural usage.
- Agriculture global water demand is estimated to increase by 19% by 2050.

Metaverse and Agribusiness

Cropinno

- Digital twins
 - Livestock management
 - Arable farming
 - Indoor farming
 - Improving sustainability (tracking of carbon, biodiversity, pollinator and water catchment services)
- Handle the farm virtually
 - Usage of satellites, sensors, and drones.
 - Can handle the farm on a tablet without being there.
 - Usage of AR to check the status of the farm (animals, crops, etc.).
- Interaction with suppliers
 - Participation at fairs.
 - Buy seeds and fertilizants virtually and get the product directly in the farm.
- Improving the farm experience
 - Virtual trainings.
 - Simulation of crops growth.
 - Simulation of pests and other crop diseases.

Joseph S. Friedman

Metaverse and Climate Change

- Increase the usage of network resources --> more electricity.
- Needs more bandwith and resources that consume more.
- New technologis are helping to avoid this problem
 - WiFi 6
 - 5G, nG
- Current data center and servers optimize energy consumption.
- Underwater data centers, Microsoft is looking at that.
- According to International Energy Agency, while Internet traffic has increased bt 16.9% (2010 – 2020), energy consumption by data centers remain almost the same.
- Renewable energies.
- Less travels.

Metaverse and Climate Change

- Potential applications
 - Visualization of climate data
 - Global collaboration (worldwide projects)
 - Climate change simulations in different geographical areas
 - Education and awareness

My Concerns

- Ethics.
- Socialization.
- Data security.
- Reality vs Virtual.

